

Functional Recycling of Biobased, Borate-Stabilized Insulation Materials As B Fertilizer

Olivier Duboc,[†] Konrad Steiner,[‡] Frank Radosits,[†] Walter W. Wenzel,[†] Walter Goessler,[§] and Jakob Santner*^{,||}©

[†]Institute of Soil Research, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria [‡]Höhere Bundeslehranstalt für Landwirtschaft Ursprung, Ursprungstraße 4, 5161 Elixhausen, Austria

[§]Institute of Chemistry, Karl-Franzens-Universität Graz, Universitätsplatz 1/I, 8010 Graz, Austria

Institute of Agronomy, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria

ABSTRACT: Boron is a finite resource, which has been listed as a critical raw material in the EU since 2014. Glass, frits and ceramics production, as well as fertilizers are among the major uses of B. Moreover, about 50 000 t B have been applied as fire retardant and pest repellent in cellulose fiber insulation (CFI) in Europe since the 1980s. Here we propose the endof-life utilization of borated CFI as B fertilizer, to decrease societal B consumption and to avoid costly and potentially environmentally harmful CFI incineration and deposition in landfills. In a case study, we show that CFI biochar can provide substantial amounts of B to rapeseed and sunflower, with the B plant-availability being comparable to sodium tetraborate, a conventional B fertilizer. The annual B fertilizer

consumption of the EU is estimated at \sim 4000 t B yr⁻¹, which could be sustained by the B currently installed as CFI for >10 years. In addition, the annual use of B in CFI of 1100 t B yr⁻¹ could cover ~25% of the annual B fertilizer demand of the EU. Hence, conversion of CFI to B fertilizer provides a meaningful end-of-life strategy, which would contribute to a more resourceefficient and sustainable economy and to several of the UN Sustainable Development Goals.

■ INTRODUCTION

Boron, an essential plant micronutrient, is listed as critical raw material (CRM) in the EU since 2014.¹ As the global B reserves-mostly Na- and Ca-borates-are concentrated in a few countries, the EU is completely dependent on imports.^{2,3} Only one country, Turkey, accounts for 38% of the global borate production and for 98% of the EU's borate supply.³ The main uses for borates in the EU are glass (60%), frits and ceramics (10%), fertilizer (12%), and other products (18%) such as construction materials, catalysts, coatings, and detergents.²

Globally, borate reserves and annual production are estimated to 3.4×10^8 and 3×10^6 t B, respectively.⁴ Thus, the exploitable reserves will only last for 110 years at the current rate of production. Notably, these figures are only a rough estimate because reserves are regularly updated, and annual ore extraction rates fluctuate depending on the market demand. Nevertheless, several authors have already pointed to an upcoming scarcity of B.^{5,6}

Boron is essential for plant cell wall structure and is suspected to have further functions in cell membranes yet to be demonstrated.⁷ Soil B deficiency, as identified by crop response to B application and soil analysis, can be observed globally, especially in large areas of northern Europe and the eastern regions of North America and China.⁸ Soils exhibiting coarse texture, low organic matter content, high pH, and humid environment are particularly prone to B deficiency.^{8,9} The annual consumption of B fertilizer in the EU is estimated between 3000 and 5000 t B, with 3-4 million ha fertilized with $\sim 1 \text{ kg B ha}^{-1} \text{ yr}^{-1}$.^{2,8} Boron fertilization is essentially based on crushed ores or their refined products, while B-rich waste products were used as fertilizer in a few cases only.⁸

Reuse of secondary raw materials as fertilizer has become an important aspect of the Circular Economy Action Plan adopted by the EU Commission in 2015.¹⁰⁻¹² Currently, the functional recycling rate of B in the EU, i.e., the reuse of a Brich material for replacing the function of a primary Bcontaining resource, is estimated to only 0.6%,13 which is mainly the reuse of biogenic wastes (food waste, manures, and sludges) as soil amendment or fertilizer.² It is therefore crucial to increase the rate of functional recycling of B, to reduce dependency on imports and unnecessary wastage of a

Received:	July 15, 2019
Revised:	November 12, 2019
Accepted:	November 18, 2019
Published:	November 18, 2019